$解:可能$
$因为正方形ABCD的边长为2 , AE=EB $
$所以AD=2 , AE=1$
$所以DE=\sqrt{AD²+AE²}=\sqrt{5}$
$①当△AED∽△CMN时,$
$\frac {AE}{CM}=\frac {DE}{MN}$
$因为AE=1,DE=\sqrt{5},MN=1$
$所以\frac {1}{MN}=\frac {\sqrt{5}}{1}$
$所以CM=\frac {\sqrt{5}}{5}$
$②当△AED∽△CNM时,$
$\frac {AD}{CM}=\frac {DE}{MN}$
$AD= 2,DE=\sqrt{5},MN = 1$
$所以\frac {2}{CM}=\frac {\sqrt{5}}{1}$
$所以CM=\frac {2\sqrt{5}}{5}$
$综上所述,相似时CM的长为\frac {\sqrt{5}}{5}或\frac {2\sqrt{5}}{5}$