$解:(1)证明:过点A作AD⊥BC,垂足为点D,如图所示,$
$在Rt△ACD中,$
$因为sinC = \frac {AD}{b}$
$所以AD= bsinC$
$S_{△ABC}= \frac {1}{2}a×AD=\frac {1}{2}absinC$
$同理可得, S_{△ABC}= \frac {1}{2}acsinB=\frac {1}{2}bcsinA$
$S_{△ABC}= \frac {1}{2}absinC =\frac {1}{2}acsinB=\frac {1}{2}bcsinA$
$(2)在Rt△ABD中,$
$因为c=2 ,∠B=60°$
$所以AD=c×sin_{60}°=\sqrt{3},BD= c.cos_{60}°= 1$
$在Rt△ACD中,$
$因为AD=\sqrt{3},∠C= 45°$
$所以CD= AD=\sqrt{3},b=\frac {AD}{sin_{45}°}=\sqrt{6}$
$所以a= BD+ CD=1+\sqrt{3}$
$S_{△ABC}=\frac {1}{2}a×AD=\frac {3+\sqrt{3}}{2}$
$因为S_{△ABC}=\frac {1}{2}bcsinA$
$所以sinA=\frac {2S_{△ABC}}{bc}=\frac {\sqrt{2}+\sqrt{6}}{4}$