$解:过点A作AD⊥CB ,交CB的延长线于点B,如图所示,$
$令正六边形的边长为1,由图可得$
$AD=\frac {19}{2} , BC=\frac {5\sqrt{3}}{2}$
$在Rt△ABD中$
$因为AD=\frac {19}{2},BC=\frac {5\sqrt{3}}{2}$
$所以tanβ=\frac {AD}{BD}=\frac {\frac {19}{2}}{\frac {5\sqrt{3}}{2}}=\frac {19\sqrt{3}}{15}$
$答: tanβ的值为\frac {19\sqrt{3}}{15}$