解:由题意可知,$An,$$Bn$是$AC、$$BC$中最靠近点$C$的${2}^{n}$等分点
则${S}_{四边形AnABBn}=\frac {3}{4}+\frac {3}{4²}+\frac {3}{4³}+···+\frac {3}{{4}^{n}}$
∵$An,$$Bn$是$AC、$$BC$中最靠近点$C$的${2}^{n}$等分点
∴$△ABC∽△AnBnC,$相似比为${2}^{n}:$$1$
∴$S_{△ABC} :$$ S_{△AnBnC}={4}^{n}:$$1$
∴$S_{△AnBnC} =\frac {1}{{4}^{n}}S_{△ABC} $
又∵$S_{四边形AnABB}= S_{△ABC}- S_{△AnBnC}$
∴$S_{四边形AnABBn}=1-\frac {1}{{4}^{n}}$
∴$\frac {3}{4}+\frac {3}{4²}+\frac {3}{4³}+···+\frac {3}{{4}^{n}}=1-\frac {1}{{4}^{n}}$