证明:∵$△ABC\sim △A'B'C'$
∴$∠B=∠B',$$\frac {AB}{A'B'}=\frac {BC}{B'C'}=k$
∵$AD$与$A'D'$分别是$△ABC$和$△A'B'C'$中边$BC、$$B'C'$上的中线
∴$BC= 2BD,$$B'C'=2B'D'$
∵$\frac {BC}{B'C'}=k$
∴$\frac {2BD}{2B'D'}=k$
∴$\frac {BD}{B'D'}=k$
∴$\frac {AB}{A'B'}=\frac {BD}{B'D'}=k$
∴$△ABD∽△A'B'D'$
∴$\frac {AB}{A'B'}=\frac {AD}{A'D'}=k$