解:四边形$ABCD$与四边形$AEOF $相似, 理由:
∵$△AEO∽△ABC$
∴$∠2=∠1,$$∠4=∠3,$$\frac {EO}{BC}=\frac {AO}{AC}=\frac {AE}{AB}$
∵$△AOF∽△ACD$
∴$∠6=∠5,$$∠8=∠7,$$\frac {OF}{CD}=\frac {AO}{AC}=\frac {AF}{AD}$
∴$∠2+∠6=∠1+∠5,$即$∠EOF=∠BCD ,$$\frac {EO}{BC}=\frac {AE}{AB}=\frac {OF}{CD}=\frac {AF}{AD}$
在四边形$AEOF $和四边形$ABCD$中,∵$∠EAF=∠BAD,$$∠4=∠3,$
$∠EOF=∠BCD,$$∠8=∠7,$$\frac {EO}{BC}=\frac {AE}{AB}=\frac {AF}{AD}=\frac {OF}{CD}$
∴四边形$AEOF∽$四边形$ABCD,$即四边形$ABCD$与四边形$AEOF $相似