解:$(1)$∵点$P$是线段$AB$的黄金分割点,$AP<BP$
∴$BP=\frac {\sqrt {5}-1}2×AB=\frac {\sqrt 5-1}2=\sqrt 5-1$
∴$AP=AB-BP=2-(\sqrt {5}-1)=3-\sqrt {5}$
$(2)$∵$QP{平分}∠AQB$
∴$P$到$AQ、$$BQ$的距离相等
∴$\frac {S_{△PAQ}}{S_{△PBQ}}=\frac {AQ}{BQ}=\frac {AP}{PB}$
又由$(1)AP=BQ=3-\sqrt {5}$
∵$AB=2$
∴$PB=AB-AP=2-(3-\sqrt {5})=\sqrt {5}-1$
∴$AQ=\frac {AP·BQ}{PB}=\frac {(3-\sqrt 5)^2}{\sqrt 5-1}=2\sqrt {5}-4$