$p_{解}:$$(1)$∵抛物线$y=-x^2+mx+3$过点$B(3,$$0)$
∴$-9+3\ \mathrm {m}+3=0$
∴$m=2$
∴抛物线的表达式为$y=-x^2+2x+3$
$(2) $由$\begin{cases}{y=-x^2+2x+3}\\{y=- \dfrac {3}{2} x+3}\end{cases},$解得$\begin{cases}{x=0}\\{y=3}\end{cases},$解得$\begin{cases}{x=\dfrac 72}\\{y=- \dfrac {9}{4}}\end{cases}$
∴$C(0,$$3),$$D(\frac {7}{2},$$- \frac {9}{4} )$
∵$S_{△ABP}=4S_{△ABD}$
∴$\frac {1}{2}\ \mathrm {AB} ×|y_P| =4× \frac {1}{2}\ \mathrm {AB}× \frac {9}{4}$
∴$|y_P| =9,$即$y_P=±9$
当$y=9$时,$-x^2+2x+3=9$
∴$x^2-2x+6=0$
∵根的判别式为$(-2)^2-4×1×6< 0$
∴此方程无实数解
当$y=-9$时,$-x^2+2x+3=-9$
解得$×1=1+ \sqrt{13},$$×2=1- \sqrt{13}$
∴$P(1+\sqrt{13},$$-9)$或$P(1- \sqrt{13},$$-9)$
$ (3) $由$y=-x^2+2x+3$
令$y=0,$得$-x^2+2x+3=0$
解得$×1=-1,$$×2=3$
∴$A(-1,$$0),$$B(3,$$0)$
抛物线的对称轴为直线$x=-\frac 2{2×(-1)} =1$
当$P、$$D$两点关于抛物线的对称轴对称时,满足条件,此时$P (-\frac {3}{2} ,$$-\frac {9}{4})$
过点$B$作$BP'//AD$交抛物线于点$P',$此时$P '$满足条件
由$A(-1,$$0),$$D(\frac {7}{2} ,$$-\frac {9}{4} )$
可得直线$AD$的表达式为$y=- \frac {1}{2} x- \frac {1}{2}$
∵$B(3,$$0),$$BP'//AD$
∴直线$BP'$的表达式为$y=- \frac 12x+\frac 32$
由$\begin{cases}{y=-\dfrac 12x+\dfrac 32}\\{y=-x^2+2x+3}\end{cases},$解得$\begin{cases}{x=3}\\{y=0}\end{cases},$或$\begin{cases}{x=-\dfrac {1}{2}}\\{y=\dfrac {7}{4}}\end{cases}$
∴$P'(-\frac {1}{2} ,$$\frac {7}{4})$
综上所述,满足条件的点$P $的坐标为$(-\frac {3}{2},$$- \frac {9}{4} $或$(-\frac {1}{2},$$ \frac {7}{4} )$