解:$(1)$在$Rt△ABC$中,∵$AC=2,$$BC=3,$$∠C=90°$
∴$AB=\sqrt {AC^2+BC^2}=\sqrt {13}$
∴$sinA=\frac {BC}{AB}=\frac 3{\sqrt {13}}=\frac {3\sqrt {13}}3,$$cosA=\frac {AC}{AB}=\frac 2{\sqrt {13}}=\frac {2\sqrt {13}}{13}$
$(2)$不妨设$BC=1,$则$AB=\sqrt 3$
在$Rt△ABC$中,∵$BC=1,$$AB=\sqrt 3,$$∠C=90°$
∴$AC=\sqrt {AB^2-BC^2}=\sqrt 2$
∴$sinA=\frac {BC}{AB}=\frac 1{\sqrt 3}=\frac {\sqrt 3}3,$$cos A=\frac {AC}{AB}=\frac {\sqrt 2}{\sqrt 3}=\frac {\sqrt 6}3$
$(3)tan B=\frac {AC}{BC}=\frac 35$
不妨设$AC=3x,$则$BC=5x$
在$Rt△ABC$中,∵$AC=3x,$$BC=5x$
∴$AB=\sqrt {AC^2+BC^2}=\sqrt {34}x$
∴$sinA=\frac {BC}{AB}=\frac {5x}{\sqrt {34}x}=\frac {5\sqrt {34}}{34},$$cosA=\frac {AC}{AB}=\frac {3x}{\sqrt {34}x}=\frac {3\sqrt {34}}{34}$