电子课本网 第80页

第80页

信息发布者:
(更多请查看作业精灵详解)
$​解:\frac{x}{x^2+3x+1}=\frac{1}{x+3+\frac{1}{x}}​$
$​当x+\frac{1}{x}=4时,原式=\frac{1}{4+3}=\frac{1}{7}​$
(更多请查看作业精灵详解)
$​解:把x= \frac{1}{3} z,y= \frac{2}{3}z代入\frac{3x^2+2xy+z^2}{x^2+y^2}​$
$​得\frac{3x^2+2xy+z^2}{x^2+y^2}​$
$​ \begin{aligned} &=\frac{3×\frac{1}{9}z^2+2×\frac{1}{3}z×\frac{2}{3}z+z^2}{\frac{1}{9}z^2+\frac{4}{9}z^2} \\ &=\frac{16}{5} \\ \end{aligned}​$
(更多请查看作业精灵详解)
$​解:方程m^2-3m+1=0​$
$​两边同除以m​$
$​得m-3+ \frac{1}{m}=0​$
$​∴m+\frac{1}{m}=3​$
$​解:∵m+\frac{1}{m}=3​$
$​∴(m+\frac{1}{m})^2=9​$
$​即m^2+2+\frac{1}{m^2}=9​$
$​∴m^2+\frac{1}{m^2}=7​$
$​解:∵m^2+\frac{1}{m^2}=7​$
$​∴m^2-2m·\frac{1}{m}+\frac{1}{m^2}=5​$
$​∴(m-\frac{1}{m})^2=5​$
$​∴m-\frac{1}{m}=±\sqrt{5}​$