$解:(3)\frac{2x^2+3}{x^2+2}=\frac{2x^2+4-1}{x^2+2}=2-\frac{1}{x^2+2}$
$∵x^2+2≥2$
$∴-\frac{1}{x^2+2}≥-\frac{1}{2}$
$∴2-\frac{1}{x^2+2}≥\frac{3}{2}$
$∵\frac{1}{x^2+2}>0$
$∴2-\frac{1}{x^2+2}<2$
$∴\frac{3}{2}≤2-\frac{1}{x^2+2}<2,即\frac{3}{2}≤\frac{2^2+3}{x^2+2}<2$