$解:由y^2+3y-1=0,知y≠0$
$∴y+3-\frac{1}{y}=0, 即\frac{1}{y}-y=3$
$∴(\frac{1}{y}-y)^2=\frac{1}{y^2}+y^2-2=9,即\frac{1}{y^2}+y^2=11$
$∴(\frac{1}{y^2}+y^2)^2=121$
$∴\frac{1}{y^4}+y^4=119$
$∴-\frac{y^8-3y^4+1}{y^4}=y^4-3+\frac{1}{y^4}=116$
$∴\frac{y^4}{y^8-3y^4+1}=\frac{1}{116}$