$解:(4) \frac {a}{2b}=\frac {6a^2}{12ab},\frac {b}{3a}=\frac {4b^2}{12ab},\frac {c}{4ab}=\frac {3c}{12ab};$
$(5)\frac {4a}{5b^2c}= \frac {8a^3c}{10a^2b^2c^2},\frac {3c}{10a^2b} =\frac {3bc^3}{10a^2b^2c^2},\frac {5b}{-2ac^2}=-\frac {25ab^3}{10a^2b^2c^2};$
$(6) \frac {3a}{2a-b},- \frac {1}{b-2a}=\frac {1}{2a-b}$