电子课本网 第10页

第10页

信息发布者:
$解:​(1)​根据题意,得​6+2x≥0,​解得​x≥-3​$
$​(2)​根据题意,得​2-x≥0,​解得​≤2​$
$​(3)​根据题意,得​2x-1\gt 0,​解得​x\gt \frac {1}{2}​$
$​(4)​根据题意,得​ \frac {1}{(x-1)^2} ≥0​且​x-1≠0,​即​x≠1​$
$解:​(5)​根据题意,得​x+1≥0​且​x≠0,​解得​x≥-1​且​x≠0​$
$​(6)​根据题意,得​2x^2+4≥0,​解得​x​为任意实数$
$​(7)​根据题意,得​-(x-6)^2≥0,​解得​x=6​$
$​(8)​根据题意,得​x-1≥0​且​1-x≥0,​解得​x=1​$
$解:原式​=\frac {3}{5}​$
$ \begin{aligned}解:原式​&=(-2)^2×(\sqrt 3)^2​ \\ ​&=12​ \\ \end{aligned}$
$解:原式​=\frac {2}{9}​$
$解:原式​=a+b​$
$ \begin{aligned}解:原式​&=(-2)^2×(\sqrt {\frac 52})^2​ \\ ​&=4×\frac 52​ \\ ​&=10​ \\ \end{aligned}$
$ \begin{aligned}解:原式​&=8+2​ \\ ​&=10​ \\ \end{aligned}$
$ \begin{aligned}解:原式​&=0.3+(\sqrt {4^2×0.2})^2​ \\ ​&=0.3+3.2​ \\ ​&=3.5​ \\ \end{aligned}$
$ \begin{aligned}解:原式​&=1+x^2-5​ \\ ​&=x^2-4​ \\ \end{aligned}$
$解:​(1)​原式​=x^2- (\sqrt {7} )^2=(x+ \sqrt {7} )(x-\sqrt {7} )​$
$​(2)​原式​=(2a^2+7)(2a^2-7)=(2a^2+7)(\sqrt {2}\ \mathrm {a}+ \sqrt {7} )·(\sqrt {2}\ \mathrm {a}-\sqrt {7} )​$
$​(3)​原式​=2(x^2-2)=2(x+\sqrt 2)(x- \sqrt {2} )​$
$​(4)​原式​=(\sqrt {2} x)^2- (\sqrt {5} )^2=(\sqrt {2} x+\sqrt {5} )(\sqrt {2} x- \sqrt {5} )​$