$ \begin{aligned} (3)解:原式&=(2-1)×(1+2+2^{2}+2+···+2^{2023}) \\ &= 2^{2024}-1. \\ \end{aligned}$
$(4)解:设1-3+3^{2}-3^{3}+···-3^{49}+3^{50}=k,①$
$则①×3,得3-3^{2}+3^{3}-3^{4}+···-3^{50}+3^{51}=3k,②$
$①+②,得4k=3^{51}+1,所以k=\dfrac{3^{51}+1}{4},$
$故原式的值为\dfrac{3^{51}+1}{4}.$