$解:(1)因为 |a^2+b^2-8|+(a-b-1)^2=0,$
$所以a^2+b^2-8=0,a-b-1=0,$
$所以a^2+b^2=8,a-b=1,所以(a-b)^2=1,$
$所以a^2-2ab+b^2=1,所以8-2ab=1,所以ab=\frac{7}{2}.$
$ \begin{aligned}(2)原式&=(2a-b)^2-1-(a^2+ab-2b^2) \\ &=4a^2-4ab+b^2-1-a^2-ab+2b^2 \\ &=3a^2+3b^2-5ab-1 \\ &=3(a^2+b^2)-5ab-1. \\ \end{aligned}$
$当a^2+b^2=8,ab=\frac{7}{2}时,$
$原式=3×8-5× \frac{7}{2}-1=\frac{11}{2}.$