解: 由三角形的外角性质$, \angle D A C=\angle B+\angle A C B ,\angle A C E=\angle B+\angle B A C , $
∵$P A, P C $分别是$ \angle D A C $和$ \angle A C E $的角平分线,
∴$\angle P A C=\frac {1}{2} \angle D A C=\frac {1}{2}(\angle B+\angle A C B), \angle P C A=\frac {1}{2} \angle A C E=\frac {1}{2}(\angle B+\angle B A C),$
在$ \triangle A C P $中$, \angle P+\angle P A C+\angle P C A=180° ,$
∴$\angle P+\frac {1}{2}(\angle B+\angle A C B)+\frac {1}{2}(\angle B+\angle B A C)=180°$
∴$2 \angle P+\angle B+\angle A C B+\angle B+\angle B A C=360°,$
在$ \triangle A B C $中$, \angle A C B+\angle B+\angle B A C=180° ,$
∴$2 \angle P+\angle B=180°, $
∴$\angle P=90°-\frac {1}{2} \angle B .$