解:$(1)$设购买每辆$A$型公交车需要$x$万元,每辆$B$型公交车需要$y$万元,
依题意,得:$\begin{cases}{3x+2y=600}\\{2x+3y=650}\end{cases}$
解得:$x=100,y=150$
答:购买每辆$A$型公交车需要$100$万元,每辆$B$型公交车需要$150$万元.
$(2)$设购进$A$型公交车$m$辆,则购进$B$型公交车$(10-m)$辆,
依题意,得:$\begin{cases}{60m+100(10-m)≥680}\\{100m+150(10-m)≤1200}\end{cases}$
解得:$6≤m≤8.$
$∵m$为整数,
$∴m=6,$$7,$$8,$
∴该公司有三种购车方案,方案$1:$购进$6$辆$A$型公交车,$4$辆$B$型公交车;
方案$2:$购进$7$辆$A$型公交车,$3$辆$B$型公交车;
方案$3:$购进$8$辆$A$型公交车,$2$辆$B$型公交车.
设该公司购买这$10$辆公交车的总费用为$w$元,
则$w=100m+150(10-m)=-50m+1500,$
$∵k=-50<0,$
$∴w$随$m$的增大而减小,
∴当$m=8$时,$w$取得最小值,最小值为$1100,$
∴购进$8$辆$A$型公交车,$2$辆$B$型公交车时总费用最少,最少费用为$1100$万元.