解:$(2)2∠F+∠P=180° $
理由:∵$ AF{平分}∠BAP,CF{平分}∠DCE,$∴$ ∠BAF=\frac {1}{2}∠BAP,$$∠DCF=\frac {1}{2}∠DCE. $
∵$ AB//CD,$∴$ ∠BAF=∠DQF. $
∵$ ∠DQF$是$△CFQ$的外角,∴$ ∠F=∠DQF-∠DCF=∠BAF-∠DCF=\frac {1}{2} ∠BAP - \frac {1}{2}∠DCE$
$=\frac {1}{2} (∠BAP_{-}∠DCE)=\frac {1}{2} [∠BAP-(180°-∠DCP)]=\frac {1}{2} (∠BAP+∠DCP-180°).$
由$(1)$可得,$∠P+∠BAP+∠DCP=360°,$∴$ ∠BAP+∠DCP=360°-∠P. $
∴$ ∠F=\frac {1}{2} (360°-∠P-180°)=90°- \frac {1}{2}∠P,$即$2∠F+∠P=180°.$