解:如图所示
①在$Rt\triangle ABD$中,由勾股定理,得:
$BD=\sqrt {AB^2-AD^2}=3$
∴$CD=BC-BD=10$
在$Rt\triangle ADC$中,$AC=\sqrt {CD^2+AD^2}=2\sqrt {29}$
∴$\sin C=\frac {AD}{AC}=\frac {4}{2\sqrt {29}}=\frac {2\sqrt {29}}{29}$
$ ②BD=\sqrt {AB²-AD²}=\sqrt {5²-4²}=3$
$ CD=BC+BD=13+3=16$
$ AC=\sqrt {AD²+CD²}=\sqrt {4²+16²}=4\sqrt {17}$
∴$sinC=\frac {AD}{AC}=\frac {\sqrt {17}}{17}$