解:$(1)$∵$BF,$$CF $分别平分$∠ABC,$$∠DCE$
∴$∠ABC=2∠FBC,$$∠DCE=2∠FCE$
∴$∠ABC+∠DCB=2∠FBC+180°-∠DCE$
$=2∠FBC+180°-2∠FCE=180°+2(∠FBC-∠FCE)$
$=180°+2[180°-∠F-∠FCB-(180°-∠FCB)]=180°-2∠F$
又$∠ABC+∠DCB=360°-(∠A+∠D)=360°-(a+β)$
∴$180°-2∠F=360°-(a+β)$
∴$∠F=\frac {1}{2} (a+β)-90°$
$(2) $如图,$∠F $即为所求
∵$BG,$$CH$分别平分$∠ABC,$$∠DCE$
∴$∠ABC=2∠GBC,$$∠DCE=2∠HCE=2∠FCB$
∴$∠ABC+∠DCB=2∠GBC+180°-∠DCE=2∠GBC+180°-2∠FCB=180°+2(∠GBC-∠FCB)$
$=180°+2[180°-∠FBC-(180°-∠F-∠FBC)]=180°+2∠F$
又$∠ABC+∠DCB=360°-(∠A+∠D)=360°-(a+β)$
∴$180°+2∠F=360°-(a+β)$
∴$∠F=90°-\frac {1}{2}(α+β)$
$(3) $不一定。当$α+β=180°$时,不存在$∠F。$