证明:$y=x^2+ax+a-2=(x+\frac {a}2)^2-\frac {a^2}4+a-2$
∴函数图像的顶点是$(-\frac {a}2,$$-\frac {a^2}4+a-2)$
$-\frac {a^2}4+a-2=-(\frac {a}2-1)^2-1$
∵不论$a$取何值,总有$-(\frac a{2}-1)^2≤0$
∴$-(\frac {a}2-1)^2-1<0,$即$-\frac {a^2}4+a-2<0$
∴不论$a$取何值,函数图像顶点总在$x$轴的下方