解:$(2)$把$x=k$代入$y=-x-1,$得$y=-k-1,$
则$A_1$的坐标是$(k,$$-k-1);$
把$x=k$代入$y=\frac {1}{x}$得:$y=\frac {1}{k},$
则$B_1$的坐标是$(k,$$\frac {1}{k});$
把$y=\frac {1}{k}$代入$y=-x-1$得:$\frac {1}{k}=-x-1$
解得:$x=-\frac {k+1}{k},$即$A_2$的坐标是$(-\frac {k+1}{k},$$\frac {1}{k});$
把$x=-\frac {k+1}{k}$代入$y=\frac {1}{x}$得:$y=-\frac {k}{k+1}$
则$B_2$的坐标是$(-\frac {k+1}{k},$$-\frac {k}{k+1})$
把$y=-\frac {k}{k+1}$代入$y=-x-1,$得:$x=-\frac {1}{k+1}$
即$A_3$的坐标是$(-\frac {1}{k+1},$$-\frac {k}{k+1});$
把$x=-\frac {1}{k+1}$代入$y=\frac {1}{x}$得:$y=-k-1$
则$B_3$的坐标是$(-\frac {1}{k+1},$$-k-1)$
把$y=k+1$代入$y=-x-1$得$x=k,$则$A_4$的坐标是$(k,$$-k-1),$即$A_1$
则点$A_{n}$的横坐标分别是:$k,$$-\frac {k+1}{k},$$-\frac {1}{k+1},$···三个循环一次