解:∵$DG//AB、$$QH//BC $
∴$△PKQ∽△DPE$
∴$\frac {S_{△KQP}}{S_{△PDE}}=(\frac {KP}{PE})^2=\frac 4{16}$
∴$\frac {KP}{PE}=\frac 12 $
∴$\frac {KP}{KE}=\frac 13$
又∵$△KQP∽△KBE$
∴$\frac {S_{△KQP}}{S_{△KBE}}=(\frac {KP}{KE})^2=(\frac 13)^2=\frac 19$
∴$\frac {4}{S_{△KBE}}=\frac 19 $
∴$S_{△KBE}=36$
∴$S_{四边形BDPQ}=S_{△KBE}-S_{△KQP}-S_{△PDE}=36-4-16=16$
同理可求得$S_{四边形CEPH}=24,$$S_{四边形AKPG}=12$
∴$S_{△ABC}=16+12+24+16+9+4=81$