解:$(1)$由题意$AB=\sqrt {AC^2+BC^2}=\sqrt {13}$
∴$sin A=\frac {BC}{AB}=\frac {3\sqrt {13}}{13},$$cos B=\frac {BC}{AB}=\frac {3\sqrt {13}}{13}$
$(2)cos A=\frac {AC}{AB}=\frac {2\sqrt {13}}{13},$$sin B=\frac {AC}{AB}=\frac {2\sqrt {13}}{13}$
$(3)$发现:$sin A=cos (90°-∠A),$$cos A=sin (90°-∠A)$
理由:∵$sin A=\frac {∠A的对边}{斜边}=\frac ac,$$cos B=\frac {∠B的邻边}{斜边}=\frac ac$
∴$sin A=cos B=cos (90°-∠A)$