电子课本网 第97页

第97页

信息发布者:
$解:\sqrt {12{a}^{2}{b}^{3}}$
$={\sqrt {4{a}^{2}{b}^{2}·3b}}$
$={\sqrt {4{a}^{2}{b}^{2}}}·{\sqrt {3b}}$
$=2ab{\sqrt {3b}}$
$​解:\sqrt {{13}^{2}-{12}^{2}}$
$={\sqrt {169-144}}$
$={\sqrt {25}}$
$=5$
$解:{\sqrt {120}}$
$={\sqrt {4×30}}$
$={\sqrt {4}}×{\sqrt {30}}$
$=2{\sqrt {30}}$
$​解:{\sqrt {200}}$
$={\sqrt {100×2}}$
$={\sqrt {100}}×{\sqrt {2}}$
$=10{\sqrt {2}}$
$解:{\sqrt {12{x}^{3}{y}^{5}}}$
$={\sqrt {4{x}^{2}{y}^{4}·3xy}}$
$={\sqrt {4{x}^{2}{y}^{4}}·{\sqrt {3xy}}}$
$=2x{y}^{2}{\sqrt {3xy}}$
$解:{\sqrt {8{x}^{3}y}}$
$={\sqrt {4{x}^{2}·2xy}}$
$={\sqrt {4{x}^{2}}}·{\sqrt {2xy}}$
$=2x{\sqrt {2xy}}$
$​解:原式 ={\sqrt {{x}^{4}(x+1)}}$
                $={\sqrt {{x}^{4}}·}{\sqrt {x+1}}$
                $={x}^{2}{\sqrt {x+1}}$
$​解:原式 ={\sqrt {a({a}^{4}+2{a}^{2}{b}^{2}+{b}^{4})}}$
                $={\sqrt {a{({a}^{2}+{b}^{2})}^{2}}}$
                $={\sqrt {a}}·{\sqrt {{({a}^{2}+{b}^{2})}^{2}}}$
                $=({a}^{2}+{b}^{2}){\sqrt {a}}$