$解:①∵EF⊥AC,$
$∴∠EAF=180°-90°-20°=70°. $
$∵AE平分∠BAD,AC平分∠BAN, $
$∴∠DAE=∠BAE,∠BAC=∠CAN, $
$∴ ∠EAF = ∠BAC +∠BAE = ∠DAE +∠CAN=\frac{1}{2}∠DAN=70°, $
$∴∠DAN=140°.$
$又MN//BC, $
$∴∠ADB=180°-140°=40°. $
$②∠ADB=2∠AEF或180°-2∠AEF.理由如下: $
$设∠AEF=α,$
$∵EF⊥AC,$
$∴∠EAF=90°-α.$
$如题图(2),当点D在点B左侧时, $
$由(1)知∠NAC=∠BAC=\frac{1}{2}∠BAN. $
$∵AE平分∠BAD交射线BC于E, $
$∴∠DAE=∠BAE=\frac{1}{2}∠BAD. $
$ \begin{aligned} 又∠EAF&=∠BAE+∠BAC \\ &=\frac{1}{2}∠BAD+\frac{1}{2}∠BAN \\ &=\frac{1}{2}(∠BAD+∠BAN) \\ &=\frac{1}{2}∠DAN \\ &=90°-α, \\ \end{aligned}$
$∴∠DAN=180°-2a. $
$∵MN//BC,$
$∴∠ADB+∠DAN=180°, $
$∴∠ADB=180°-∠DAN=180°-(180°-2α)=2α,$
$∴∠ADB=2∠AEF; $
$当点D在点B右侧时,如图.$
$∵AE平分∠BAD,AC平分∠BAN, $
$∴∠BAE=\frac{1}{2}∠BAD,∠BAC=\frac{1}{2}∠BAN. $
$ ∵∠EAF$
$=∠BAC-∠BAE $
$=\frac{1}{2}∠BAN-\frac{1}{2}∠BAD $
$=\frac{1}{2}(∠BAN-∠BAD) $
$=\frac{1}{2}∠DAN $
$=90°-α, $
$∴∠DAN=180°-2α, $
$∵MN//BC,$
$∴∠ADB=∠DAN=180°-2α, $
$∴∠ADB=180°-2∠AEF. $
$综上,∠ADB=2∠AEF或180°-2∠AEF. $