$解:(1)∵A=(a+b)²-3b², B=2(a+b)(a-b)-3ab,$
$ \begin{aligned}∴A-B&=(a+b)²-3b²-[2(a+b)(a-b)-3ab] \\ &=a²+2ab+b²-3b²-(2a²-2b²-3ab) \\ &=a²+2ab+b²-3b²-2a²+2b²+3ab \\ &=-a²+5ab. \\ \end{aligned}$
$(2)∵(a-3)²+|b-4|=0,$
$ ∴a-3=0,b-4=0,$
$∴a=3,b=4,$
$ ∴A-B=-a²+5ab=-3²+5×3×4=-9+60=51.$