电子课本网 第45页

第45页

信息发布者:


解:②-①得​​​​​​$: \frac {2}{3} x=3 , $​​​​​​
即​​​​​​$ x=\frac {9}{2} ,$​​​​​​
将​​​​​​$ x=\frac {9}{2} $​​​​​​代入②
得​​​​​​$: y=-9 ,$​​​​​​
则方程组的解为​​​​​​$\begin {cases}{x=\frac {9}{2} }\\{y=-9}\end {cases}$​​​​​​

解:由①得​​​​​​$: x=-y+8③ ,$​​​​​​
把③代入②得​​​​​​$: 3(-y+8)-2 y=-1 ,$​​​​​​
解得​​​​​​$: y=5 ,$​​​​​​
把​​​​​​$ y=5 $​​​​​​代入 ③得​​​​​​$: x=-5+8=3 ,$​​​​​​
原方程组的解为​​​​​​$: \begin {cases}{x=3 }\\{y=5}\end {cases}$​​​​​​
解:由题意得​​​​​​$: \begin{cases}{2 a-b=1 \text { ① } }\\{a+2 b=8②}\end{cases}$​​​​​​
​​​​​​$\text { ① } ×2+\text { ②得: } 5 a=10 $​​​​​​
∴​​​​​​$a=2 $​​​​​​
​​​​​​$\text { 把 } a=2 \text { 代入①得: } 2 ×2-b=1 $​​​​​​
∴​​​​​​$b=3$​​​​​​

解​​​​​​$:\begin {cases}{x+y=a①}\\{5 x-3 y=-a②}\end {cases}$​​​​​​
​​​​​​$\text {①} ×3+\text { ②得: } 8 x=2 a $​​​​​​
∴​​​​​​$x=\frac {a}{4} $​​​​​​
∴​​​​​​$\frac {a}{4}+y=a $​​​​​​
∴​​​​​​$y=\frac {3\ \mathrm {a}}{4} $​​​​​​
∴​​​​​​$\begin {cases}{x=\frac {a}{4} }\\{y=\frac {3\ \mathrm {a}}{4}}\end {cases}$​​​​​​

解​​​​​​$:\begin {cases}{2 x+y=7①}\\{x+2 y=8②}\end {cases}$​​​​​​
​​​​​​$① ×2 , $​​​​​​得​​​​​​$4 x+2 y=14③$​​​​​​
③ -②, 得​​​​​​$3 x=6 ,$​​​​​​∴​​​​​​$x=2$​​​​​​
将​​​​​​$ x=2 $​​​​​​代入 ①, 得​​​​​​$2 ×2+y=7 $​​​​​​
∴​​​​​​$y=3$​​​​​​
所以方程组的解是​​​​​​$\begin {cases}{x=2 }\\{y=3}\end {cases}$​​​​​​
∴​​​​​​$\frac {x-y}{x+y}=\frac {2-3}{2+3}=-\frac {1}{5}$​​​​​​

​​​​$解:\because a//b\ $​​​​
​​​​$\therefore \angle 1+\angle 2=180^{\circ}\ $​​​​
​​​​$\therefore \angle 1=180^{\circ}-\angle 2\ $​​​​
​​​​$\because 2 \angle 2-\angle 1=30^{\circ}\ $​​​​
​​​​$\therefore 2 \angle 2-\left(180^{\circ}-\angle 2\right)=30^{\circ}\ $​​​​
​​​​$2 \angle 2-180^{\circ}+\angle 2=30^{\circ}\ $​​​​
​​​​$3 \angle 2=210^{\circ}\ $​​​​
​​​​$\therefore \angle 2=70^{\circ}\ $​​​​
​​​​$\therefore \angle 3=180^{\circ}-\angle 2=180^{\circ}-70^{\circ} =110^{\circ}$​​​​
​​​​$ $​​​​
​​​​$\begin {cases}{x=2}\\{y=-1}\end {cases}$​​​​
​​$解:\left\{\begin{array}{r}2 x+3 y=15 m① \\5 x-3 y=-m②\end{array}\right.\ $​​
​​$\text { ① }+ \text { ② 得 } 7 x=14 m\ $​​
​​$x=2 m\ $​​
​​$将\ x=2 m\ 代入①得\ 4 m+3 y=15 m\ $​​
​​$y=\frac{11}{3} m$​​
​​$故原方程组的解为\ \left\{\begin{array}{l}x=2 m \\ y=\frac{11}{3} m\end{array}\right. .$​​
​​$ $​​
​​​​$解:解方程组\ \left\{\begin{array}{l}2 x+5 y=-6 \\ 3 x-5 y=16\end{array}\right. ,得\left\{\begin{array}{l}x=2 \\y=-2\end{array}\right.$​​​​
​​​​$把\ \left\{\begin{array}{l}x=2 \\ y=-2\end{array}\right.\ 代入\ \left\{\begin{array}{l}a x-b y=-4 \\ b x+a y=-8\end{array}\right.\ 可得\left\{\begin{array}{l}2 a+2 b=-4 \\2 b-2 a=-8\end{array}\right.$​​​​
​​​​$解之可得\left\{\begin{array}{l}a=1 \\b=-3\end{array}\right.$​​​​
​​​​$把\ \left\{\begin{array}{l}a=1 \\ b=-3\end{array}\right.\ 代入\ 3 {a}+2 {b} , 得3 a+2 b=-3$​​​​
​​​​$ $​​​​
​​​​$ $​​​​
​​​​$解:\because(3 x-2 y-5)^{2}+\sqrt{x-2 y+3}=0\ $​​​​
​​​​$\therefore \left\{\begin{array}{l}3 x-2 y-5=0\\ x-2 y+3=0\end{array}\right.$​​​​
​​​​$解得\left\{\begin{array}{l}x=4 \\y=\frac{7}{2}\end{array}\right.\ $​​​​
​​​​$\therefore x y-5=4 \times \frac{7}{2}-5=9,\ $​​​​
​​​​$\therefore x y-5 \text { 的平方根是 } \pm 3 .$​​​​
​​​​$ $​​​​
​​​​$ $​​​​
​​$解:已知\ \left\{\begin{array}{l}2(x+y)+3(x-y)=3① \\ 7(x+y)-3(x-y)=24②\end{array}\right.\ \ $​​
​​$①+ ②得:\ 9(x+y)=27 ,即\ x+y=3③\ $​​
​​$将③代入①中:\ 2 \times 3+3(x-y)=3 ,即\ x-y=-1 .$​​
​​$由\ \left\{\begin{array}{l}x+y=3 \\ x-y=-1\end{array}\right. , 解得\ \left\{\begin{array}{l}x=1 \\ y=2\end{array}\right.\ $​​

​​$ $​​
​​$解: 由原方程组, 得\ \left\{\begin{array}{l}2 x+y=3 \text {, ① } \\ 2 x-y=5 \text {. ② }\end{array}\right.\ $​​
​​$由 ① +②, 得\ 4 x=8 , 解得\ x=2 .$​​
​​$由①-②, 得\ 2 y=-2 , 解得\ y=-1 .$​​
​​$所以原方程组的解是\ \left\{\begin{array}{l}x=2, \\ y=-1 .\end{array}\right.\ $​​

​​$ $​​