解:①+②, 得$ 3 x-3 y=15 ,$ 即$ x-y=5 ④,$ ②-③, 得$ x+2 y=11 ⑤,$ ⑤ - ④, 得$ 3 y=6 ,$ ∴$y=2 ,$ 把$ y=2 $代入④, 得$ x=7 .$ 再把$ x=7,$$ y=2 $代入③, 得$ z=-2 .$ ∴ 原方程组的解为 $\begin {cases}{x=7 }\\{y=2}\\{z=-2}\end {cases}$
$\text {解:① }-3 ×2 \text {, 得 } 5 y=5, $ ∴$y=1,$ $\text {②}+③, \text { 得 } 8 x-5 y=7, $ ∴$x=\frac {3}{2},$ $\text { 再把 } x=\frac{3}{2}, y=1$ $ \text { 代入③, 得 } z=-1 \text {, } $ ∴原方程组的解为 $\begin {cases}{x=\frac {3}{2} }\\{y=1 }\\{z=-1}\end {cases}$
$\text { 解:由已知可得 }\left\{\begin{array} { l } { a + b + c = 2 , } \\{ a - b + c = - 2 , } \\{ 4 a + 2 b + c = 3 , }\end{array} 解得\left\{\begin{array}{l}a=-\frac{1}{3}, \\b=2, \\c=\frac{1}{3} .\end{array}\right.\right. $
$解:设这三个数\text { 分别为 } x, y, z \text {. 可得 }\left\{\begin{array} { l } { x + y = 8 3 , } \\{ y + z = 2 1 , } \\{ x + z = 3 8 , }\end{array}解得 \left\{\begin{array}{l}x=50, \\y=33, \\z=-12 .\end{array}\right.\right.$ $ $ $ $
$解:设一、二、三金金额分别为\ x\ 万元,\ y\ 万元和\ z\ 万元.\ $ $可得\ \left\{\begin{array}{l}10 x+20 y+30 z=41, \\ 12 x+20 y+28 z=42 \\ 14 x+25 y+40 z=54 .\end{array}\right.\ $ $\text {, 解这个方程 } 组, 得\ \left\{\begin{array}{l}x=1, \\ y=0.8, \\ z=0.5 .\end{array}\right.\ $
|
|