解$:(1)$原式$=3 \sqrt {3}+\frac {\sqrt {3}}{3} -(2 \sqrt {3}-\frac {\sqrt {5}}{5}+3 \sqrt {5}) $
$=\frac {10 \sqrt {3}}{3}-2 \sqrt {3}+\frac {14 \sqrt {5}}{5} $
$=\frac {10 \sqrt {3}}{3}-2 \sqrt {3}-\frac {14 \sqrt {5}}{5} $
$=\frac {4 \sqrt {3}}{3}-\frac {14 \sqrt {5}}{5}$
$(2)2 \sqrt {125}-\sqrt {28}+\sqrt {\frac {1}{20}}-\frac {1}{3} \sqrt {175} $
$=10 \sqrt {5}-2 \sqrt {7}+\frac {\sqrt {5}}{10}-\frac {5 \sqrt {7}}{3} $
$=\frac {101 \sqrt {5}}{10}-\frac {11 \sqrt {7}}{3}$
$\text { (3)原式 }=2 \sqrt{a-b}+(a-b) \sqrt{a-b}-a \sqrt{a-b} $
$=(2-b) \sqrt {a-b}$