电子课本网 第5页

第5页

信息发布者:
1
1
解​$:(1)$​原式​$=3 \sqrt {3}+\frac {\sqrt {3}}{3} -(2 \sqrt {3}-\frac {\sqrt {5}}{5}+3 \sqrt {5}) $​
​$=\frac {10 \sqrt {3}}{3}-2 \sqrt {3}+\frac {14 \sqrt {5}}{5} $​
​$=\frac {10 \sqrt {3}}{3}-2 \sqrt {3}-\frac {14 \sqrt {5}}{5} $​
​$=\frac {4 \sqrt {3}}{3}-\frac {14 \sqrt {5}}{5}$​
​$(2)2 \sqrt {125}-\sqrt {28}+\sqrt {\frac {1}{20}}-\frac {1}{3} \sqrt {175} $​
​$=10 \sqrt {5}-2 \sqrt {7}+\frac {\sqrt {5}}{10}-\frac {5 \sqrt {7}}{3} $​
​$=\frac {101 \sqrt {5}}{10}-\frac {11 \sqrt {7}}{3}$​
​$\text { (3)原式 }=2 \sqrt{a-b}+(a-b) \sqrt{a-b}-a \sqrt{a-b} $​
​$=(2-b) \sqrt {a-b}$​

解​$:\frac {2}{5} \sqrt {25\ \mathrm {a}}+9 \sqrt {\frac {a}{3}}-2\ \mathrm {a}^2 \sqrt {\frac {1}{a^3}}=18 $​
​$\frac {2}{5} \sqrt {5^2 ·a}+9 \sqrt {\frac {3\ \mathrm {a}}{3^2}}-2\ \mathrm {a}^2\sqrt {\frac {a}{(a^2)^2}} =18 $​
​$\frac {2}{5} ×5 \sqrt {a}+9 ×\frac {1}{3} \sqrt {3\ \mathrm {a}}-2\ \mathrm {a}^2 ·\frac {1}{a^2} \sqrt {a}=18 $​
​$2 \sqrt {a}+3 \sqrt {3\ \mathrm {a}}-2 \sqrt {a}=18 $​
​$3 \sqrt {3\ \mathrm {a}}=18 $​
​$\sqrt {3\ \mathrm {a}}=6 $​
​$3\ \mathrm {a}=6^2 $​
​$a=12$​

解:∵​$x+\frac {1}{x}=\sqrt {8} $​
∴​$(x+\frac {1}{x})^2=x^2+2+\frac {1}{x^2}=8 $​
∴​$x^2+\frac {1}{x^2}=6 $​
∴​$x^2+\frac {1}{x^2}-2=4 $​
​$\text { 即 }(x-\frac{1}{x})^{2}=4 $​
∴​$x-\frac{1}{x}=2 \text { 或 }-2$​

解:∵​$x=2-\sqrt {3}, y=2+\sqrt {3}, $​
∴​$x^2+x y+y^2 $​
​$=x^2+2 x y+y^2-x y $​
​$=(x+y)^2-x y $​
​$=(2-\sqrt {3}+2+\sqrt {3})^2 $​
​$-(2-\sqrt {3})(2+\sqrt {3}) $​
​$=16-4+3 $​
​$=15 .$​

解​$:(1)x^2=24 $​
​$x= \pm \sqrt {24} $​
​$x_1=2 \sqrt {6}, x_2=-2 \sqrt {6}$​
​$\text { (2) } 3 \sqrt{2} x=-\sqrt{8} $​
​$x=-\sqrt {8} ·\frac {1}{3 \sqrt {2}} $​
​$x=-\frac {2}{3}$​

解​$:(1)$​原式​$=5-3=2;$​
​$(2)$​原式​$=16+3+8\sqrt 3-16-3+8\sqrt 3=16\sqrt 3;$​
​$(3)$​原式​$=\frac 12\sqrt 3-2\sqrt 6-2\sqrt 3=-\frac 32\sqrt 3-2\sqrt 6;$​
​$(4)$​原式​$=(1+x)^2-x=1+x+x^2$​

​$\text { 解: } $​∵​${x}=\sqrt {5}-2, $​
∴​$x^2=(\sqrt {5}-2)^2=5-4 \sqrt {5}+4=9-4 \sqrt {5}, $​
∴​$(9+4 \sqrt {5}) x^2-(\sqrt {5}+2) {x}+4$​
​$=(9+4 \sqrt {5})(9-4 \sqrt {5})-( \sqrt {5}+2)(\sqrt {5}-2)+4 $​
​$=81-80-(5-4)+4 $​
​$=1-1+4 $​
​$=4 .$​

解:∵​$a-b=\sqrt {3}+\sqrt {2}, b-c=\sqrt {3}-\sqrt {2}, $​
∴​$a-c=2 \sqrt {3}, $​
∴​$a^2+b^2+c^2-a b-b c-a c $​
​$=\frac {1}{2}[(a-b)^2+(b-c)^2+(a-c)^2] $​
​$=\frac {1}{2}[(\sqrt {3}+\sqrt {2})^2+(\sqrt {3}-\sqrt {2})^2. .+(2 \sqrt {3})^2] $​
​$=\frac {1}{2}(5+2 \sqrt {6}+5-2 \sqrt {6}+12) $​
​$=\frac {1}{2} ×22 $​
​$=11 .$​