解$:(1)\sqrt {\frac {0.8}{2.25}}=\frac {4 \sqrt {5}}{15}$
$(2)\sqrt {1 \frac {4}{7}} \div \sqrt {\frac {22}{7}} =\sqrt {\frac {11}{7} \div \frac {22}{7}} =\sqrt {\frac {1}{2}} =\frac {\sqrt {2}}{2}$
$(3)$原式$=-\frac mn×\frac {0.8\ \mathrm {m^2}\sqrt m}{2n^2}=-\frac {2\ \mathrm {m^3}}{5n^3}\sqrt m;$
$(4)\frac {\sqrt {5}}{\sqrt {10\ \mathrm {a}}} =\frac {\sqrt {5} ·\sqrt {10\ \mathrm {a}}}{\sqrt {10\ \mathrm {a}} ·\sqrt {10\ \mathrm {a}}} =\frac { \sqrt {2\ \mathrm {a}}}{2\ \mathrm {a}}$