电子课本网 第139页

第139页

信息发布者:
解:原式​$=\frac {(a-b)^2}{(a+b)(a-b)}×\frac {ab}{b-a}$​
​$ =-\frac {ab}{a+b}$​
当​$a=\sqrt 2+1,$​​$b=\sqrt 2-1$​时
原式​$=-\frac {(\sqrt 2+1)(\sqrt 2-1)}{\sqrt 2+1+\sqrt 2-1}=-\frac 1{2\sqrt 2}=-\frac {\sqrt 2}4$​
解:​$(1)$​原式​$=\frac {3×(\sqrt {10}-\sqrt 7)}{(\sqrt {10}+\sqrt 7)(\sqrt {10}-\sqrt 7)}=\sqrt {10}-\sqrt 7$​
原式​$=\frac {10-7}{\sqrt {10}+\sqrt 7}=\frac {(\sqrt {10})^2-(\sqrt 7)^2}{\sqrt {10}+\sqrt 7}=\frac {(\sqrt {10}+\sqrt 7)(\sqrt {10}-\sqrt 7)}{\sqrt {10}+\sqrt 7}=\sqrt {10}-\sqrt 7$​
​$(2) $​原式​$ =\frac {\sqrt 3-1}{(\sqrt 3+1)(\sqrt 3-1)}+\frac {\sqrt 5-\sqrt 3}{(\sqrt 5+\sqrt 3)(\sqrt 5-\sqrt 3)}+·s+\frac {\sqrt {2 \mathrm n+1}-\sqrt {2 \mathrm n-1}}{(\sqrt {2 \mathrm n+1}+\sqrt {2 \mathrm n-1})(\sqrt {2 \mathrm n+1}-\sqrt {2 \mathrm n-1})}$​
​$ =\frac {\sqrt 3-1}2+\frac {\sqrt 5-\sqrt 3}2+·s+\frac {\sqrt {2 \mathrm n+1}-\sqrt {2 \mathrm n-1}}2$​
​$ =\frac {\sqrt {2 \mathrm n+1}-1}2 $​