电子课本网 第121页

第121页

信息发布者:
解:原式​$=\sqrt {6}×\sqrt {2}-\sqrt {\frac {3}{8}}×\sqrt {2}$​
​$ =2\sqrt {3}-\frac {\sqrt {3}}{2}$​
​$ =\frac {3\sqrt {3}}{2}$​
解:原式​$=2-2\sqrt {2}+\sqrt {2}-2$​
​$ =-\sqrt {2}$​
解:原式​$=(\sqrt {2})²-1²$​
​$ =2-1$​
​$ =1$​
解:原式​$=(\sqrt {2})²-2\sqrt {6}+(\sqrt {3})²$​
​$ =2-2\sqrt {6}+3$​
​$ =5-2\sqrt {6}$​
解:原式​$=4a\sqrt {a}+3a\sqrt {a}-\frac {1}{2}a²×\frac {2\sqrt {a}}{a}$​
​$ =7a\sqrt {a}-a\sqrt {a}$​
​$ =6a\sqrt {a}$​
解:原式​$=6-4\sqrt {5}+3\sqrt {5}-10$​
​$ =-4-\sqrt {5}$​
解:原式​$=(3\sqrt {2})²-(\sqrt {7})²$​
​$ =18-7$​
​$ =11$​
解:原式​$=(\sqrt {5})²-2×\sqrt {5}×\sqrt {10}+(\sqrt {10})²$​
​$ =5-10\sqrt {2}+10$​
​$ =15-10\sqrt {2}$​
解:原式​$=\frac {(\sqrt {3}-1)²}{4}$​
​$ =\frac {1-2\sqrt {3}+3}{4}$​
​$ =\frac {2-\sqrt {3}}{2}$​
解:原式​$=\frac {(1+\sqrt {5})²}{4}$​
​$ =\frac {1+2\sqrt {5}+5}{4}$​
​$ =\frac {3+\sqrt {5}}{2}$​
解:​$\frac {1}{2}×(4+\sqrt {3})×(4-\sqrt {3})=\frac {13}{2}(\mathrm {cm}²)$​
解:​$x+y=2\sqrt {3},$​​$x-y=2$​
​$(1)$​原式​$=(x+y)²=(2\sqrt {3})²=12$​
​$(2)$​原式​$=(x+y)(x-y)=2×2\sqrt {3}=4\sqrt {3}$​