电子课本网 第76页

第76页

信息发布者:
$ \begin{aligned}解:原式&=\frac{a²-a²+1}{a+1}·\frac{(a+1)^{2} }{(a+1)(a-1)} \\ &=\frac {1}{a-1}. \\ \end{aligned}$
$∵-2<a<3且a≠±1,$
$∴a=0符合题意.当a=0时,$
$原式=\frac{1}{0-1}=-1.$
$ \begin{aligned} 解:原式&=(\frac{4}{x-2}+\frac{x²-4}{x-2})·\frac{(x-2)^{2} }{x(x-2)}\ \\ &=\frac{x^{2} }{x-2}·\frac {x-2}{x} \\ &=x.\ \\ \end{aligned}$
$∵当x=0或x=2时,原式无意义,\ $
$∴当x=1时,原式=1;$
$当x=3时,原式=3.$
$解:由题意, \begin{cases}{ 3a-b+1=0, }\ \\ {3a-\frac {3}{2}b=0,\ } \end{cases}解得\begin{cases}{\ a=-1,}\ \\ { b=-2. } \end{cases}$
$∴\frac{b^{2} }{a+b}÷[(\frac {b}{a-b})^{2} ·\frac{ab}{a+b}]$
$=\frac{b²}{a+b}·\frac{(a+b)(a-b)^{2} }{ab^{3} }$
$=\frac {(a-b)²\ }{ab} .\ $
$当a=-1,b=-2时,$
$原式=\frac{(-1+2)^{2} }{(-1)×(-2)}=\frac{1}{2}.$
$ \begin{aligned}解:原式&=[\frac{(a+1)(a-1)}{(a-1)²}+\frac{1}{a-1}]·a(a-1) \\ &=(\frac{a+1}{a-1}+ \frac{1}{a-1}) ·a(a-1) \\ &=\frac{a+2}{a-1}·a(a-1) \\ &=a(a+2) \\ &=a²+2a. \\ \end{aligned}$
$∵a²+2a-1=0,∴a²+2a=1. $
$当a²+2a=1时,原式=1.$
$ \begin{aligned}解:原式&=1-\frac{a-b}{a-2b}·\frac{(a-2b)^{2} }{(a+b)(a-b)} \\ &=1-\frac{a-2b}{a+b} \\ &= \frac{a+b}{a+b}-\frac{a-2b}{a+b} \\ &=\frac{3b}{a+b}. \\ \end{aligned}$
$当\frac{a}{b}=\frac{1}{3},即b=3a时,$
$原式=\frac{9a}{a+3a}=\frac{9a}{4a}=\frac{9}{4}.$
$解:∵x=\frac{1-\sqrt{2022}}{2},$
$∴1-2x= \sqrt{2022}. $
$∴(1-2x)²=2022.$
$∴4x²-4x=2021. $
$ \begin{aligned}∴原式&=[(4x³-4x²)+(4x²-4x)-2021x-2022]³ \\ &=(2021x+2021-2021x-2022)³ \\ &=(-1)³ \\ &=-1. \\ \end{aligned}$