电子课本网 第75页

第75页

信息发布者:
$ \begin{aligned} 解:原式&=\frac{a-b}{a+b}-\frac{(a-b)^{2} }{(a+b)(a-b)}× \frac{a}{a-b} \\ &=\frac{a-b}{a+b} -\frac{a}{a+b} \\ &=-\frac{b}{a+b}. \\ \end{aligned}$
$ \begin{aligned}解:原式&=\frac{(a-3)^{2} }{a(a-2)}÷(\frac{a-2}{a-2}-\frac{1}{a-2}) \\ &=\frac{(a-3)^{2} }{a(a-2)}· \frac{a-2}{a-3} \\ &=\frac{a-3}{a} . \\ \end{aligned}$
$当a=4时,原式=\frac{4-3}{4}=\frac{1}{4}.$
$ 解:由\begin{cases}{ x+2y=1, } \\ { x-y=4, } \end{cases} $
$得\begin{cases}{ x=3, } \\ { y=-1. } \end{cases} $
$ \begin{aligned} 原式&=\frac{x(x+y)}{(x-y)²}·\frac {(x+y)(x-y)}{(x+y)^{2} } \\ &=\frac{x}{x-y}. \\ \end{aligned}$
$当x=3,y=-1时,$
$原式=\frac{3}{3-(-1)}=\frac {3}{4}.$
$解:由题意,得\begin{cases}{ 2x-y+1=0, } \\ { 3x-2y+4=0, } \end{cases} $
$解得\begin{cases}{ x=2, } \\ { y=5. } \end{cases} $
$ \begin{aligned}则原式&=1-\frac {x-y}{x-2y}·\frac{(x-2y)^{2} }{(x+y)(x-y)} \\ &=1-\frac{x-2y}{x+y} \\ &=\frac {3y}{x+y}. \\ \end{aligned}$
$当x=2,y=5时,$
$原式=\frac{3×5}{2+5}=\frac{15}{7}.$
$ \begin{aligned} 解:原式&=\frac{x-2}{x-1}·\frac{x-1}{(x+2)(x-2)} \\ &=\frac{1}{x+2}, \\ \end{aligned}$
$∵x≠1且x≠±2,$
$∴当x=-1时,原式=1.$