首 页
电子课本网
›
第114页
第114页
信息发布者:
A
D
A
$2\sqrt{3} $
$\sqrt{5} $
-2≤x≤2
-8
解:由题意,得a-1≤0,a+1≥0,
解得-1≤a≤1.
∴原式=2|a-3|+|2a+3|=6-2a+2a+3=9.
$ 解:设CD=x,则4^{2} -x^{2} =6^{2} -(8-x)^{2} ,$
$解得x=\frac {11}{4}.$
$AD=\sqrt {4^{2} -(\frac {11}{4})^{2} }=\frac {3\sqrt {15} }{4}.\ $
$S_{△ABC}=\frac {1}{2}×8 ×\frac {3\sqrt {15} }{4}=3\sqrt {15}.\ $
$\sqrt{5+\frac{1}{7}}=\frac {6}{7}\sqrt {7}\ $
$\ 证明:左边= \sqrt{n+\frac{1}{n+2}} = \sqrt{\frac {n(n+2)+1}{n+2}}\ \ $
$= \sqrt{\frac{(n+1)^{2} }{n+2}}\ $
$= \frac{n+1}{n+2} \sqrt{n+2} =右边\ $
$∴ \sqrt{n+\frac{1}{n+2}} = \frac{n+1}{n+2}\sqrt{n+2}.\ $
$\sqrt{n+\frac{1}{n+2}} = \frac{n+1}{n+2} \sqrt{n+2} $
上一页
下一页