$解:∵\sqrt {a} +\sqrt {b} =\sqrt {3} +\sqrt {2} ,$
$\sqrt {ab}=\sqrt {6}\ -\sqrt {3} ,$
$∴a+b$
$=(\sqrt {a} +\sqrt {b})^{2} -2\sqrt {ab}$
$=(\sqrt {3}+\sqrt {2})^{2} -2(\sqrt {6} -\sqrt {3} )$
$=5+2\sqrt {6} -2\sqrt {6}+2\sqrt {3}\ \ \ \ $
$=5+2\sqrt{3}.$