$解:(1)\frac{\sqrt {2} }{2}+\ \sqrt{8} - \sqrt{18} -4\sqrt {2}\ $
$= \frac{\sqrt {2} }{2} +2\sqrt {2} -3\sqrt {2} -4\sqrt {2} = -\frac{9\sqrt {2} }{2}.$
$(2)因为\frac {\sqrt {2} }{2}÷\sqrt{18}×\sqrt {18} □4\sqrt {2} =-\frac{13}{4}\sqrt {2} ,$
$所以\frac{\sqrt {2} }{2}×\frac{1}{2\sqrt {2} }×3\sqrt {2}□ 4\sqrt {2} =-\frac{13}{4}\sqrt {2} ,$
$所以\frac{3\sqrt {2} }{4}□4\sqrt {2} =-\frac{13}{4}\sqrt {2} .$
$因为\frac {3\sqrt {2} }{4}-4\sqrt {2}= -\frac{13}{4}\sqrt {2} ,$
$所以□内的符号是“-”.$
$(3)12-\frac{7\sqrt {2} }{2}$