解:$(1)② \angle {PHE} $是一个定值$, \angle {PHE}=45° , $理由如下:
∵${AB} \perp {CD}, $
∴$\angle {POQ}=90°, $
∴$\angle {PQO}+\angle {QPO}=90°, $
∴$\angle {QPO}=90°-\angle {PQO}, \angle {AQP}=180°-\angle {PQO},$
∵$E Q $平分$ \angle A Q P, P H $平分$ \angle Q P O ,$
∴$\angle E Q P=\frac {1}{2} \angle A Q P=90°-\frac {1}{2} \angle P Q O, $
$\angle H P Q=\frac {1}{2} \angle Q P O=45°-\frac {1}{2} \angle P Q O, $
∴$\angle {H}=\angle {EQP}-\angle {HPQ}=45° ;$
$(2) \angle P F E^{\prime}+\angle Q G E^{\prime}=90° , $理由如下:
连接$ {EE}^{\prime} ,$
∵${AB} \perp {CD}, $
∴$\angle {POQ}=90°, $
∴$\angle {PQO}+\angle {QPO}=90°, $
∵$\angle {CPQ}+\angle {QPO}=180°, \angle {PQA}+\angle {PQO}=180°, $
∴$180°-\angle {CPQ}+180°-\angle {PQA}=90°, $
∴$\angle {CPQ}+\angle {PQA}=270°, $
∵${QE}, {PE} 分别平分 \angle {PQA}, \angle {CPQ}, $
∴$\angle E P Q=\frac {1}{2} \angle C P Q, \angle E Q P=\frac {1}{2} \angle P Q A, $
∴$\angle E P Q+\angle E Q P=\frac {1}{2} \angle C P Q+\frac {1}{2} \angle P Q A= 135°$
∴$\angle {PEQ}=180°-\angle {EPQ}-\angle {EQP}=45° , $
由折叠的性质可知$ \angle GE^{\prime}\ \mathrm {F}=\angle P E Q=45° ,$
∵$\angle {FEE}^{\prime}+\angle {EFE}^{\prime}+\angle {EE}^{\prime} {F}=180°=\angle {GEE}^{\prime}+\angle {EGE}^{\prime}+ \angle EE^{\prime}\ \mathrm {G} ,$
∴$\angle F E G+\angle F E^{\prime}\ \mathrm {G}+\angle E F E^{\prime}+\angle E GE^{\prime}=360° ,$
∴$\angle EF E^{\prime}+\angle E F E^{\prime}=270° ,$
∵$\angle E F E^{\prime}+\angle P F E^{\prime}=180°=\angle E GE^{\prime}+\angle QGE^{\prime} ,$
∴$\angle PFE^{\prime}+\angle Q{G}\ \mathrm {E}^{\prime}=360°-\angle E F E^{\prime}-\angle E F E^{\prime}=90° .$