解:$(1) ∵ AB$是$⊙O$的直径,
$∴ ∠ACB=90°$
$∵ AD$平分$∠BAC,$
$∴ ∠BAC=2∠BAD. $
$∵ ∠BOD=2∠BAD,$
$∴ ∠BOD=∠BAC,$
$∴ OD//AC,$
$∴ ∠OEB=∠ACB=90°,$
$∴ ∠OEC=180°-∠OEB=90°$
$(2)$连接$BD.$
设$OA=OB=OD=r,$
则$OE=r-4,$$AB=2r. $
$∵ AB$是$⊙O$的直径,
$∴∠ADB=90°,$
∴在$Rt△ADB$中,$BD²=AB²-AD².$
由$(1),$得$∠OEB=90°,$
$∴ ∠BED=180°-∠OEB=90°,$
$∴ BE²=OB²-OE²=BD²-DE²,$
$∴ BD²=AB²-AD²=BE²+DE²=OB²-OE²+DE²,$
$∴ (2r)²-(2 \sqrt{35} )²=r²-(r-4)²+4².$
整理,得$r²-2r-35=0,$
解得$r=7$或$r=-5($不合题意,舍去).
$∴ AB=2r=14,$
$∴ BD= \sqrt{AB²-AD²} = \sqrt{14²-(2\sqrt{35})²} =2 \sqrt{14} . $
$∵ AF$是$⊙O$的切线,
$∴ AF⊥AB. $
$∵ DG//AF,$
$∴ DG⊥AB. $
$∵ S_{△ABD}= \frac {1}{2}× AD×BD= \frac {1}{2}×AB×DG,$
$∴ DG=\frac {AD×BD}{AB} = \frac {2\sqrt{35}×2\sqrt{14}}{14} =2 \sqrt{10}$