证明$:(1)△=(2m-1)²-4×1×(-3m²+m)$
$=4m²-4m+1+12m²-4m$
$=16m²-8m+1$
$=(4m-1)²≥0$
∴无论$m$为何值,方程总有实数根。
$(2)$根据题意,得$x_{1}+x_{2}=2m-1,x_{1}x_{2}=-3m²+m. $
$∵\frac {x_2}{x_1}+\frac {x_1}{x_2}$
$=\frac {x_1²+x_2²}{x_1x_2}$
$=\frac {(x_1+x_2)²-2x_1x_2}{x_1x_2}$
$=\frac {(x_1+x_2)²}{x_1x_2}-2$
$=-\frac {5}{2},$
$∴ \frac {(2m-1)²}{3m²+m}-2=-\frac {5}{2}. $
整理,得$5m²-7m+2=0,$
解得$m_{1}=1,m_{2}=\frac {2}{5}$
$∴m $的值为$1$或$\frac {2}{5}$