解:$(1)∵\triangle CAD≌ \triangle CED,$$ \triangle CEF≌ \triangle CAD,$
$∴\angle ACD=\angle ECD,$$\angle ECF=\angle ACD,$
$∴\angle ACD=\angle ECD=\angle ECF$
$∴\angle ACB=\angle ACD+\angle ECD+\angle ECF=3\angle ECF=90°,$
$∴ \angle ECF=30°,$
$∵\triangle CEF≌\triangle BEF,$
$∴\angle ECF=\angle B=30°,$
∴在$Rt\triangle ABC$中$\angle A={90}°-\angle B={60}°.$
$ (2)AC//EF,理由如下:$
$∵△CEF≌△BEF$
$∴∠CFE=∠BFE$
$∵∠BFE+∠CFE=180°$
$∴∠BFE=90°$
$∵∠ACB=90°$
$∴∠ACB=∠BFE$
$∴AC//EF$