证明$:(1) ∵ ∠DEF=∠B,∠DEC=∠B+∠BDE=∠DEF+∠CEF, $
$∴ ∠BDE=∠CEF.$
在$△BDE $和$△CEF $中,
$\begin{cases}{∠B=∠C,}\\{∠BDE=∠CEF, }\\{BE=CF,}\end{cases}$
$∴ △BDE≌△CEF. $
$∴ DE=EF$
$(2)∵BC=9,CE=2BE,$
$∴ BE=3,CE=6. $
$∵ ∠A+2∠DEF= 180°,∠A +∠B +∠C= 180°,∠B =∠C,$
$∴∠DEF=∠B=∠C.$
$∵∠DEC=∠B+∠BDE=∠DEF+∠CEF, $
$∴ ∠BDE = ∠CEF. $
在$△BDE $和$ △CEF $中,
$\begin{cases}{∠B=∠C,}\\{∠BDE=∠CEF,}\\{BE=CF,}\end{cases}$
$∴△BDE≌△CEF.$
$∴BD=CE=6$