解:$(1)∵∠BAC=90°,$$AB=AC,$
$∴∠B=∠C=\frac {1}{2}(180°-∠BAC)=45°,$
$∴∠ADC=∠B+∠BAD=45°+30°=75°.$
$∵∠BAC=90°,$$∠BAD=30°,$
$∴∠DAC=60°.$
又$∵AD=AE,$
$∴△ADE$是等边三角形,
$∴∠ADE=∠AED=60°,$
$∴∠EDC=∠ADC-∠ADE=75°-60°=15°.$
$(2)$解:与$(1)$类似:$∠B=∠C=\frac {1}{2}(180°-∠BAC)=90°-\frac {1}{2}α,$
$∴∠ADC=∠B+∠BAD=90°-\frac {1}{2}α+30°=120°-\frac {1}{2}α,$
$∵∠DAC=∠BAC-∠BAD=α-30°,$$AD=AE,$
$∴∠ADE=∠AED=\frac {1}{2}(180°-∠DAC)=105°-\frac {1}{2}α,$
$∴∠EDC=∠ADC-∠ADE=(120°-\frac {1}{2}α)-(105°-\frac {1}{2}α)=15°.$
$(3)∠EDC$与$∠BAD$的数量关系是$∠EDC=\frac {1}{2}∠BAD.$