解:$(1)∵∠A=60°,$
$∴∠ABC+∠ACB=180°-∠A=120°,$
$∵BE$平分$∠ABC,$$CF_{平分}∠ACB,$
$∴∠ABE=∠CBE=\frac {1}{2}∠ABC,$$∠BCF=∠ACF=\frac {1}{2}∠ACB,$
$∴∠CBE+∠BCF=\frac {1}{2}∠ABC+\frac {1}{2}∠ACB=\frac {1}{2}×120°=60°,$
$∴∠BPC=180°-(∠CBE+∠BCF)=180°-60°=120°.$
(2)证明:在BC上截取BQ=BF,连接PQ,

在$△FBP $和$△QBP $中,
$\begin{cases}{BP=BP}\\{∠FBP=∠QBP}\\{BF=BQ}\end{cases}$
$∴△FBP≌△QBP(\mathrm {SAS}),$
$∴FP=QP,$$∠BFP=∠BQP,$
$∵∠A=60°,$$∠FPE=∠BPC=120°,$
$∴∠AFP+∠AEP=360°-60°-120°=180°,$
$∴∠BFP+∠CEP=180°,$
$∵∠CQP+∠BQP=180°,$
$∴∠CEP=∠CQP,$
在$△CQP $和$△CEP $中,
$\begin{cases}{∠QCP=∠ECP}\\{∠CQP=∠CEP}\\{CP=CP}\end{cases}$
$∴△CQP≌△CEP(\mathrm {AAS}),$
$∴EF=QP,$
$∵FP=QP,$
$∴FP=EP,$
$∴△EFP$是等腰三角形.