证明:$(1)∵△ABC$是等边三角形,
$∴AB=BC,$$∠ABE+∠EBC=60°.$
$∵△BEF$是等边三角形,
$∴EB=BF,$$∠CBF+∠EBC=60°,$
$∴∠ABE=∠CBF.$
∵在$△ABE$和$△CBF,$
$\begin{cases}{AB=BC,}\\{∠ABE=∠CBF,}\\{EB=BF,}\end{cases}$
$∴△ABE≌△CBF$
$(2)$解:∵等边$△ABC$中,$AD$是$∠BAC$的角平分线,
$∴∠BAE=\frac {1}{2}∠BAC=30°,$$∠ACB=60°.$
$∵△ABE≌△CBF,$
$∴∠BCF=∠BAE=30°,$
$∴∠ACF=∠BCF+∠ACB=30°+60°=90°.$