证明:$(1)∵ AD$为$△ABC$的角平分线,
$∴ ∠BAD=∠CAD.$
由作图,知$AE=AF.$
在$△ADE$和$△ADF $中,
$\begin{cases}{AE=AF,}\\{∠EAD=∠FAD,}\\{AD=AD,}\end{cases}$
$∴ △ADE≌△ADF $
$(2)∵∠BAC=80°,$$AD$为$△ABC$的角平分线,
$∴ ∠EAD=\frac {1}{2}∠BAC=40°. $
由作图,知$AE=AD.$
$∴ ∠AED=∠ADE. $
$∴ ∠ADE=\frac {1}{2}×(180°-40°)=70°.$
$∵ AB=AC,$$AD $为$△ABC $的角平分线,
$∴ AD⊥BC.∴∠BDA=90°.$
$∴∠BDE=90°-∠ADE=20°$