$解:(2)∵点(t,y_1)在线段AB上,点Q(t-1,y_2)在直线y=2x-\frac 5 2上$
$∴y_1=-\frac 3 4t+3,y_2=2(t-1)-\frac 5 2=2t-\frac 9 2,0\leqslant t\leqslant 2$
$∴y_1-y_2=-\frac 3 4t+3-(2t-\frac 9 2)=-\frac {11}4t+\frac {15}2$
$∵-\frac {11}4<0$
$∴y_1-y_2得值随t的增大而减小$
$又∵0\leqslant t \leqslant2$
$∴当t=0时,y_1-y_2取得最大值,为\frac {15}2$