$证明:∵△ABC≌△A'B'C',$
$∴∠B=∠B',AB=A B',∠BAC=∠B'A'C'.$
$∵AD、A'D'分别是△ABC与△A'B'C的角平分线,$
$∴∠BAD=\frac{1}{2}∠BAC,∠B'A'D'=\frac{1}{2}∠B'A'C',$
$∴∠BAD=∠B=∠B',$
$在△ABD 和△A'B'D'中,$
${{\begin{cases} { {∠B=∠B'}} \\{AB=A'B'} \\ {∠BAD=∠B'A'D'} \end{cases}}}$
$∴△ABD≌A'B'D'(ASA),$
$∴AD=A'D'$